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Abstract

This report highlights the improvements in speech recognition and identification tasks by em-

ploying wav2vec, a learnable feature extractor based on an unsupervised learning method. This

extractor can utilize easily available and abundant unlabelled data to give better representa-

tions of audio data. In this report, we have discussed the merits of using trainable feature

extraction methods over traditional log filterbanks. The initial aspect was to improve the tra-

ditional automatic speech recognition (ASR) systems by replacing the log-mel filterbanks with

the wav2vec [28] model. Moreover, we have tested and mentioned different loss functions

commonly used for speech recognition, including connectionist temporal classification (CTC)

loss [9]. We have compared the proposed model with the model used for earlier training and

highlighted the character error rate (CER) improvements by introducing wav2vec in the existing

ASR model.

As our final objective, we explored the language identification (LID) task in code-switched

audio samples. We present a neural network for the code-switched spoken language identifi-

cation task. Finally, we use an established listen, attend and spell (LAS) acoustic model [3]

for the utterance level LID, which uses an attention network for decoding. Motivated by the

achievements in the ASR task, we replaced the prior log-mel filterbanks with the wav2vec, a

data-driven learnable feature extractor. The wav2vec model helps to deal with the unavailability

of labelled speech data of multiple languages.

Unlike the traditional CTC-based models, which assume independence between adjacent

output labels, both the wav2vec model and the LAS model assume a relation between serial

speech data as well as the output labels. Further attention-based decoder captures the past as

well as the next speech data for the LID task.
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Chapter 1

Introduction

In various fields, like image classification, optical character recognition, or speech recognition,

deep artificial neural networks have proved to be a boon, increasing accuracy levels similar to

human performance. In speech recognition and identification tasks, despite massive datasets

available for the English speech, researchers face difficulty extending these deep models to deal

with multilingual tasks. The challenge regarding such extension is the limited data availability

for some traditionally old and less documented languages like Telugu or Gujarati. Generally,

transfer learning techniques are deployed to deal with such a shortage of data. But in such

cases, transfer learning may cause significant scaling problems. Further, some languages differ

so much that the source network’s training data and the fine-tuning data may not remain iden-

tical enough. The transfer learning method will only worsen the performance of the model in

such cases. Therefore, we explored unsupervised learning methods to learn better representa-

tions of speech data using unlabeled datasets. The unsupervised model, thus eliminates the need

for labeled speech data to learn better speech representations. Even though the speech commu-

nity may have less labeled data for Telugu language, unlabeled speech is easily available in

abundance.

Unsupervised learning has shown great results in domains like natural language process-

ing [6] [26] [2]. Moreover, unsupervised learning has shown improvements in tasks such as text

classification and machine translation [7] [16]. In computer vision domains, vast improvements

have been made using learned representation for ImageNet [5] on various tasks like image cap-

tioning [32] or pose estimation [24]. Furthermore, tasks with extremely small datasets such as

speaker identification has shown accuracy improvements using pre-trained speech representa-

tions [27].
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1.1 Review of automatic speech recognition

Firstly, we tackled the automatic speech recognition (ASR) problem with monolingual En-

glish audio data to validate our hypothesis. According to our hypothesis, these learned data

representations by an unsupervised model would significantly outperform traditionally used

log-mel filterbanks in any speech related tasks. Log-mel filterbanks are a rule-driven method

and has no learnable parameters for optimization. On the other hand, unsupervised models

like wav2vec [28] can learn to extract features from the speech by optimizing for other related

tasks. We pursued this domain as ASR models can potentially pose as the solution for signifi-

cant industrial and social problems. Ranging from its application in evolving search engines to

healthcare industries and securities, speech recognition has eased and accelerated the conver-

sion process. Currently, due to limitations in ASR, technologies are not able to make advanced

improvements in human-computer interaction (HCI) domains. There have been many attempts

to design a state-of-the-art ASR models for various languages.

Initially, ASR models were built for different speech utterances starting with single words

to connected words and finally moving to continuous speech. Since the continuous speech was

practiced, experiments were further performed on spontaneous speeches where the speech was

not rehearsed and flowed with a peculiar accent or informal expressions. The advent of con-

tinuous speech recognition posed significant challenges for the researchers as the output label

size was not fixed, and thus, making a single model only became possible after connection-

ist temporal classification (CTC) loss [9] emerged. Various approaches to ASR include the

acoustic-phonetic approach [8] and the pattern recognition approach. The former method that

had been studied for 40 years used methods like gaussian mixture models and support vector

machines [31] and was based on the hypothesis that only finite distinctive phonemes exist in

any spoken language. The latter approach centrally focused on forming speech pattern repre-

sentations and matching the patterns of unknown speeches with known patterns. It incorporated

techniques similar to hidden markov models for pattern matching. Finally, the deep learning

models gained much popularity; [12] that combined both the methods and exploited the con-

cepts of acoustic phonetics for pattern recognition.

We presented a deep neural network that learned to transcribe speech utterances into char-

acters for the task of ASR. Unlike some prior models, which incorporated multiple models for

acoustics, pronunciation, and language modeling, we developed an end-to-end pipeline, which
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further captured the relation between characters predicted by the model, which was lacking in

previous CTC [9] based models. We introduced a novel feature extraction model to replace

the trivial log-mel filterbanks to achieve better performance in speech-to-text recognition tasks.

Rather than log-mel filterbanks, we integrated the wav2vec model to calculate learned speech

representations, with the original ASR model. We further decided to use a single wav2vec

model to deal with code-switched data. Code-switched refers to the phenomenon of using two

or more languages while speaking a sentence. The syntax of a code-switching sentence belongs

to the native language, while the other language is referred to as foreign language. Some of the

common examples include French-German, Hindi-English, Malay-English, Mandarin-English,

and Spanish-English. Wav2vec model can learn relations between these sets of languages when

the model is trained using such code-switched languages.

It is not advisory to use multiple models for identifying various languages in a spoken

speech utterance because different languages may contain similar pronunciations of two com-

pletely different words with different meanings. For instance, ‘door’ word means ‘thread’ in

Hindi, and the English word ‘case’ means ‘hair’ in Marathi. These examples force the model

to understand the context in which the words were spoken. When spoken in a sentence, these

words may mislead the classifier and give catastrophic results. Say, for instance, “mere liye

door khol dena” is a sentence spoken in Hindi, but the word ‘door’ implies its English meaning

rather than its Hindi interpretation, that is a ‘thread’.
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1.2 Review of language identification task

After our observed success in the monolingual ASR tasks, we planned to extend our hypoth-

esis towards multilingual datasets, which was the ultimate foundation of our proposed theory.

Some of the works found for multilingual tasks such as multilingual speech recognition were

useful for further research. We traced the development of multilingual ASR through a few of

the prevalent publications. The paper in [34] describes their work for English and Swedish lan-

guage. They combined two monolingual language models by sharing parameters across both

the languages, maintaining a better performance. The work presented in [19] focuses on the

use of discriminative training procedures, which significantly improved their metrics for recog-

nition of four different African languages. In addition to that, [11] suggested the use of joint

optimization on shared data along with discriminative features. This approach improved their

model at the cost of increased training time.

Conclusively, we aim to develop a model for language identification (LID) task. The

initial stages of the project used wav2vec for extracting learned feature representations for tar-

geting improvements in monolingual ASR tasks. The results clearly expressed the advantages

of employing learned compact feature representations using the unsupervised model for speech

recognition tasks. The LID task refers to recognizing the language in which a speech is spo-

ken. In utterance level LID, we observe a relation or dependence of an output label on adjacent

labels. For example, the adjacent characters in a word belong to the same language, and the

probability of certain nearby words associated with the same language is higher. Hence, we

take advantage of the listen, attend and spell (LAS) model [3] that uses the pyramidal recurrent-

net and an attention-based decoder to identify the language. In addition, the wav2vec [28]

approach has been used to derive more useful feature representations given the raw speech sam-

ples. Analogous to various automatic speech recognition tasks and text recognition tasks [6],

feeding a learnable feature vector has proved to improve performance rather than feeding raw

speech signals.

The LAS model stacked over the wav2vec model further tackles the dimensionality prob-

lem. The wav2vec model reduces the input length by a factor of 160, and the LAS encoder

further reduces the input length by a factor of 2 with each recurrent layer. Without this length

reduction, the model may converge too slowly, and with this unavailability of large datasets for

multiple languages, the error rates may not reduce significantly. Further, training of complex
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models requires an abundance of data, but training instances for tasks related to multiple lan-

guages are generally limited. Wav2vec provides a solution to the above-posed problem using

unsupervised learning technique to extract high-level and compact features for further training.

LID comes naturally in human readers that are familiar with the language. Researchers

over the 50 years of research have tried to mimic this human ability. However, unlike human

capabilities, a LID task aims to learn thousands of languages [29]. Research on the LID task

has been traditionally focussed on monolingual written documents [14]. However, there has

been some work for speech systems. For example, [13] has worked on LID that focusses on

the identification of spoken utterances using synthetic data. Also, [4] uses a Bayesian model to

determine the language of words. It uses the relative frequencies of the character trigrams as

probabilities for the model. Further, we focus on integrating some techniques used in speech

recognition systems for improvement of LID task. We plan on learning useful representations

of the speech signals that can be further used for faster and better convergence of LID models.

Prior to extracting learned representations of data, models were built upon a raft of feature

extraction techniques including but not limited to mel-frequency cepstral coefficients (MFCC),

linear predictive coding (LPC), and fast fourier transform (FFT). Learning pre-trained repre-

sentations is widely used in various applications. As only a few models have been built to learn

acoustic representations for complete sentences, including Bert [6] and wav2vec [28], we can

draw references from acoustic to word recognition. This domain significantly aligns with the

LID task as the word recognition shares a similar set of features. In the former area, learning

word embedding has dramatically reduced the error rates, as evident in a few of the significant

word embedding techniques like word2vec [18], Global Vectors GloVe [25]. We aim to see a

similar improvement in the LID task.

We proceed in this paper by describing the model architecture in detail in chapter 2. This

chapter explains both the proposed models and baseline models in three sections: preprocessor,

acoustic model, and decoder. Chapter 3 discusses the experimental setup. It majorly describes

the dataset details, the frameworks used, and the training details of the proposed model. Finally,

chapter 4 mentions the metrics and results obtained, and chapter 5 concludes the entire report

and mentions some possible future works.
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Chapter 2

Model Architecture

The current design of numerous speech recognition models, involving many state-of-the-art

models revolves around a similar template. Though the training procedure varies for every

single model, the template does describe the model’s inherent structure. The template consists

of three significant modules:

1. Preprocessor

2. Acoustic Model

3. Decoder

Figure 2.1: Template for speech-to-text models

The preprocessor module transforms the speech signal into compact and compressed rep-

resentations that represent some essential qualities of the speech data. There are two significant
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reasons why models use a preprocessor:

1. The speech signal is usually a very long sequence of decibel values. For example, a

10-second speech signal recorded using a device with 16 kHz recording frequency, will

result in a sequence of 16,000∗10, that is 1,60,000 dimension vector. Such speech data, if

represented as a vector and is provided to any learning model, will suffer from the curse

of dimensionality and huge weights matrices.

2. Moreover, the speech data has temporal relations, and capturing these interdependence

between data is more useful than simply using some decibel values in speech recognition

tasks. Transformations of speech data and filtering is another reason for the preprocessor

to exist.

In the following sections, we will mention the two preprocessor modules used in our experi-

ments: the log-mel filterbanks, and the wav2vec.

The task of the acoustic model is to understand the preprocessed speech data and predict the

probability distributions on phonemes or characters, depending on the prediction tasks. De-

pending upon the training procedure and loss functions, the outputs of the acoustic models vary.

For example: In CTC-based models, the output of some speech sounding ‘CAT’ is ‘C-C-C-C-

A-A-A-T-T-T’, while in seq-to-seq models with attention, the output is usually the probability

distribution of every phoneme at a particular timestep. In our experiments, we implemented

two acoustic model designs: Listen, attend and spell [3] acoustic model, and DeepSpeech [1]

acoustic model.

Whatever the acoustic model design may be, each model require a decoder module to decode

their output into the necessary format. In our experiments, we implemented a ‘beam search

decoder’ for the decoding task.

The following sections explain major components of each module used during experimentation

and conclusively mentions all the models that we used for our LID or ASR tasks.
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2.1 Preprocessor

2.1.1 Log-mel filterbanks

To train any speech recognition model, the initial step is to identify the relevant features in a

sound signal that are crucial for the recognition and identification tasks. This involves discard-

ing the background noise or emotions. The human ears are evolved to interpret audio frequen-

cies on a non-linear scale. Therefore if the sound is presented on a linear frequency scale, it

may compromise the recognition abilities of the system. Recent research [30] has provided em-

pirical evidence suggesting that designing systems that work in a non-linear fashion improves

speech processing capabilities. One of the popular approaches involves logarithmic filterbanks

to obtain the desired non-linear frequency resolution.

Computational blocks

Figure 2.2: Block diagram for the computation of log-mel filterbank features including the
short-time energy and their first and second-order time derivatives.

The audio signal is continuously changing, making it challenging to analyze the signals

or apply the filterbanks. Therefore, we assume that the signal is stationary for a short time

frame, and a window is applied to analyze that signal further. In our experiment, we took 25 ms

overlapping windows with a stride of 10 ms. Generally, a rectangular or a hamming window is

used for the purpose. For a window represented by w[n], the windowed speech frame is derived
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as y[n] = s[n] ∗ w[n]. Example of a hamming window:

w[n] =

0.54− 0.46 cos 2πn
N−1 , if 0 ≤ n ≤ N − 1

0, otherwise
(2.1)

We calculate the short-time energy of the window as one of the features for model training.

Further, we extract the spectral information from the window. Here we apply a 512 points

discrete-time fourier transform (DFT) algorithm on the 25 ms signal window to recognize the

different frequencies.

X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn (2.2)

DFT gives the energy of each frequency. However, human ears are more sensitive towards low-

frequency components as compared to higher frequencies. So the DFT is warped in mel scale,

which makes the sound equidistant in pitch.

mel(f) = 1127 ln(1 +
f

700
) (2.3)

This eventually results in 10 filters spaced linearly below 1 kHz and remaining filters spread

logarithmically above 1 kHz. Subsequently, we need to take the logarithm of the energies

produced by mel warping. Extending the analogy to human ears, we do not perceive loudness

on a linear scale. To double the perceived level of loudness, we need to spend eight times

more energy. This indicates that significant variations in signals at high frequency may not be

differentiable to human ears as compared to low-frequency signals.

For the final output, we received a 123-dimensional vector for each frame. The 512 point

DFT computed for each frame is first converted to a mel scale. Further, we divide the frequen-

cies into 40 filterbanks and report the energies of each filterbank, resulting in a 41-dimensional

vector, including the dc energy returned for each of the sliding windows. Then we calculate

the first-order and second-order time derivatives of these 41 features, each returning another

41-dimensional vector. Thus the resulting vector size of each frame is (123,1). The final output

size used for training is (batch size, temporal length, 123). The derivatives of these features are

given as:

4t =

∑N
n=1 n ∗ (ct+n − ct−n)

2
∑N

n=1 n
2

(2.4)

where4t represents the time-derivative features and ct represents the filterbank energies.
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2.1.2 Wav2vec model

The wav2vec model is aimed at learning compact and useful features from raw speech data that

can be used either solely as an encoder or as a feed-forward network for other models. Based

on the fact that most languages share a standard set of tones, wav2vec can learn shared rep-

resentations for different languages. As shown in [28], using wav2vec model features helps in

surpassing performance in certain speech recognition tasks compared to the log-mel filterbanks.

Architecture

Figure 2.3: Representation of pre-training from audio data X , which is encoded using the
encoder and context networks that are piled on top of each other. The arrows represents the
model’s optimization on next-step prediction task. [28]

The wav2vec model has two components. First is the encoder network f : X → Z, and

the second one is the context network g : Z → C.

The encoder will take raw audio samples as the input and feed it into a five layer con-

volutional layer with respective kernel sizes as (10, 8, 4, 4, 4) and strides as (5, 4, 2, 2, 2).

The encoder network takes in 30 ms of 16 kHz data, which is a 480-dimension vector in each

window with a stride of 10 ms. The stride of the encoder results in a low frequency (100 Hz)

data.

The receptive field of 30 ms is further amplified in the context network. The context

network will take (zi, .., zi−v) encoder outputs extending its receptive size to 30 ∗ v ms and

produce a single contextualized tensor ci = g(zi...zi−v). In the currently implemented model,

the total receptive field of the context network is 210 ms. The context network further extends

10



Figure 2.4: Illustrating the overall architecture if the wav2vec model using a small part of
the entire speech signal. The encoder module processes 30 ms speech audio into compact
representations with reduced dimension. The context module takes in the encoder output for
the ith speech section till (i− v)th speech section.

over encoder with nine convolutional layers, each with kernel size three and stride one keeping

the temporal dimension of the output constant.

The layers of both the encoder and context networks consist of a causal convolution with

512 channels, a group normalization layers, and a rectified linear unit (ReLU) nonlinearity. For

better results, we have applied normalization across both the feature and temporal dimensions.

Optimization

Wav2vec is designed to engage in a self-supervised training procedure. Self-supervision is

accomplished by training the model to predict the next timestep it is supposed to encounter

given previous timesteps have already occurred. To achieve this objective, the model produces

some distractor samples from a uniform distribution and tries to distinguish the original sample

k steps ahead in the future from these distractor samples. Wav2vec uses a contrastive loss

function [20] for its optimization given by:

Loss = −
K∑
k=1

T−k∑
i=1

(
log σ(zTi+khk(ci)) + λẑ∈pnE[log σ(−ẑThk(ci))]

)
(2.5)
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where σ represents sigmoid function, zi+k is the true sample to be predicted with a probability

of σ(zTi+khk(ci)), and hk represents a affine transformation, hk(ci) = Wkci+ bk for each step k.

The level of training difficulty is gradually increased to obtain better results. The model

was tasked to predict sudden changes immediately after an unaltered portion of the clip. Further,

the model was trained to anticipate frames comparatively farther in the future.

The wav2vec is aimed to understand the meaning of the speech waveforms by predicting

future samples and create useful compact representations from raw audio. Thus, these represen-

tations can significantly improve the performance metrics of various speech processing tasks.
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2.2 Acoustic Models

2.2.1 Listen, attend and spell model

The features extracted by the preprocessor module are used as an input for the listen , attend and

spell (LAS) acoustic model. There are mainly two major components in the LAS model [3],

listener and speller. The function of the first part, the listener, is to form high-level features

from the processed input speech. We extract the processed input speech from the raw signal

using some preprocessor module. Then, it is passed into the LAS encoder to create compact

features that capture sequence. The second part is known as the speller and has an attention

network stacked over the recurrent neural network (RNN) decoder and the listener outputs act

as the input for the RNN layers. This network finally outputs the character probability for each

frame. Using LAS we need to model:

P(y|x) =
∏
i

P(yi|x, y<i) (2.6)

where x represents input to the LAS model, and yi represents the output of the ith attention. As

the name suggests, listen represents the encoder; and attend and spell represents the attention

based decoder.

h = Listen(x) (2.7)

P(y|x) = AttendAndSpell(h, y) (2.8)

Here h represents the output of the listen network.

Architecture

To capture the sequence in the input, the listener uses a bipyramidal long short term memory

(BLSTM) [10]. Moreover, to reduce the computation complexity for attention mechanism and

to produce compact high-level features, encoder engages a pyramidal BLSTM (pBLSTM) that

reduces the temporal dimension by a factor of two in each successive layer. Thus in the current

setting, the ith node in the jth layer is given by

hji = pBLSTM(hji−1, [h
j
2i, h

j−1
i ]) (2.9)

The output distribution is a function of the current decoder state and context. The current

decoder state is a function of the decoder state, output, and context of the previous timestamp.
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Figure 2.5: LAS acoustic model architecture: The listener is a pyramidal BLSTM encoding our
input sequence x into high-level features h, the speller is an attention-based decoder generating
the y characters from h. [3]

An attention mechanism produces the context vector. Specifically,

ci = AttentionContext(si, h) (2.10)

si = RNN(si−1, yi−1, ci−1) (2.11)

P(yi|x, y< i) = CharacterDistribution(si, ci) (2.12)

where ci represents context states and si represents decoder states.

Optimizer and Decoder

The LAS model can be efficiently trained end to end without the requirement of any pre-training

of separate parts. The decoder predicts the output at tth timestep based on the previously oc-

curred timesteps. During training, we can feed the ground truth for previous characters and

maximize the log probability for model optimization.

max
θ

∑
i

log P(yi|x, y∗<i; θ) (2.13)

where y∗<i represents the ground-truth.
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However, while decoding the ground-truths would not be available. To combat this situ-

ation, we randomly feed predicted characters and ground-truth with some sampling rate. De-

coding is achieved using a novel beam search algorithm mentioned in Section 2.3.1, where for

each timestep, β most likely beams are chosen to store β hypothesis of possible outputs.

2.2.2 DeepSpeech model

The Interspeech language identification challange 2020 proposed this baseline. For this base-

line model, preprocessor and decoder module used are mentioned in this section itself to ease

the flow of understanding. The speech input is first passed through a short-time fourier trans-

form (STFT) feature extractor, which returns a matrix. The matrix is further split in a magnitude

and phase component using the ‘magphase’ function of the Librosa library. The output matrix

is converted as:

output matrix = log(1 + output matrix) (2.14)

and fed to the model architecture [1]. Then to optimize the model, we use a CTC [9] loss

function.

STFT feature extractor (Preprocessor)

A standard fourier transform gives the frequency information averaged over the entire time

signal. But the better speech features would require frequency information localized over time

frame intervals which is given by STFT.

XSTFT [m,n] =
L−1∑
k=0

x[k]g[k −m]e−j2nπk/L (2.15)

Acoustic model architecture

We used a multilayer neural model with 2 convolutional (Conv2D) layers, 5 long short term

memory (LSTM) layers, and a fully connected layer. We feed the padded feature vector to the

first Conv2D layer with 32 filters, kernel size (41, 11), and stride (2, 2). Then it is followed by

a batch norm and a hard tanh activation layer. Then the output is again padded and provided

to a second Conv2D layer with 32 filters, kernel size (21, 11), and stride (2, 1). It is again

followed by a batch norm and a hard tanh activation layer. The output is then fed to 5 layers

of bi-directional LSTM network, where each layer has 1024 hidden neurons for each time step.
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Figure 2.6: DeepSpeech acoustic model design, where first three layers are the Conv2D layers,
followed by seven bidirectional LSTM layers and a last fully connected layer. Finally, a CTC
based decoder is used. [1]

The final prediction is then formed for each time step by passing through a fully connected layer

of size (1024, number of output characters) with a softmax activation layer. The probability of

the kth character at tth timestep for a input-output pair (x,y) is given by:

p(lt = k/x) =
exp(wLk · hL−1t )∑
j exp(w

L
j · hL−1t )

(2.16)

where t denotes the time step, L denotes the layer number, w are the weights of fully connected

layer, h is the output of LSTM layer and l denotes labels.

Loss Function

Since the input size is variable, the output size is also variable. So we use a CTC loss function

[9] for optimization.

Encoding of output labels: We need to encode our output labels to be of variable lengths.

Eg: the word ‘our’ can be actually predicted as ‘oooouurrrrrr’. So we need to encode ‘our’ to

various alignments. Certain rules for encoding are:

1. Use a special character ‘-’ to distinguish between the same characters that occur consec-

utively.
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2. ‘-’ can be repeated as many times, which will be taken care of while decoding.

3. We can repeat each character as many times.

Eg: ‘is’ can we written as ‘-iiisss’

Loss Calculation: The model outputs a matrix of size (number of characters, timesteps).

At each timestep, we have probabilities of each character. Suppose we have probabilities for

two timesteps, and the output label is ‘a’. We can form alignments as ‘-a’, ‘a-’, or ‘aa’. Then

we calculate the scores of each alignment by multiplying the probabilities at each timestep. For

e.g. score for ‘-a’ can be calculated as P (l1 = ‘-’|x) ∗ P (l2 = ‘a’|x), where x is the input. The

net score is calculated as the sum of the scores of all alignments and the loss function is given

as negative logarithm of the net score. This loss function is used for optimization.

Decoding: Finally decoding is done while predicting outputs. Decoding is simply per-

formed in 2 steps.

• Remove all the duplicates from the prediction.

• Remove the special character ‘-’ from the prediction.

E.g. ‘-aaa-aa-bccc’ will be decoded as ‘aabc’.
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2.3 Decoder

2.3.1 Beam search decoder

Figure 2.7: Standard beam search. Image from https://distill.pub/2017/ctc/

We have modeled a sequence network with an attention network to output the probabilities

of characters for each attention. In a greedy approach, we would go in a particular order on the

output labels and select the character with the highest probability. The sequence networks at tth

timestep throw the following output:

ŷ = argmax
y

P(y<t>|x, y<1>, ..., y<t−1>) (2.17)

But if the probability of a beginning character in the ground truth is low according to the model

trained, then the actual label’s prediction may be compromised. Beam search algorithm partially

solves this by considering a beamwidth of β.

In a beam search algorithm, at each time step, probabilities of all the possible characters

are predicted depending on previously occurred characters and the attentions learned, and out

of the vocabulary, top β possibilities are stored. Searching is initiated with the start of statement

<sos> token and is propagated until an end of statement <eos> token is predicted. Consider

an example where beamwidth β is 3, and the size of the vocabulary is 50, including characters,

punctuations, and numbers. For the first character, there will be a total of fifty possibilities, out

of which the top three will be stored. Next, for each of these three potentialities, fifty vocabulary
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characters will be predicted, and out of the hundred and fifty possibilities, only three will be

stored. This will continue until a <eos> token is predicted, and the statement will be stored in

a bank of possible outputs of the ASR model.

To select the best suitable sentence for the output, we need to multiply the probabilities of

all the characters. Since probabilities are less than one, the net probability for a long sentence

may vanish due to numerical underflow affecting the gradients and may result in slow learning.

To aid this problem, we take logs of the probabilities and add them instead. Based on the fact

that log is a monotonically increasing function, maximizing log function will have the same

result as maximizing the P(y|x).

text output = argmax
y

Ty∏
t=1

P(y<t>|x, y<1>, ..., y<t−1>) (2.18)

text output = argmax
y

Ty∑
t=1

log P(y<t>|x, y<1>, ..., y<t−1>) (2.19)

Since multiplying fewer probabilities results in a higher number, the model will soon

achieve a bias for shorter statements rendering the objective function ineffective. Thus, we

introduce a length normalization factor according to the equation:

s(y|x) = log P(y|x)
|y|c

+ λ log PLM(y) (2.20)

where λ is the language model (LM) weight, |y|c is the number of characters and PLM represents

LM probability. In our implementation, language model is not used, implying λ is 0.
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2.4 Summary of the models explored

As evident in the speech recognition community, there is ample speech data from news, con-

versations, or other sources. Still, most of them are unlabelled, especially for a few native or

uncommon languages. Since it is impractical to annotate the data manually, wav2vec has been

a boon to the speech recognition and identification tasks, attributing to the fact that it is entirely

unsupervised. Thus, our proposed model utilizes the power of wav2vec models by replacing

the filterbank features. Each of our end-to-end models can be described using the template.

Concerning the template, the baseline model is represented in Table 2.1.

Module name Baseline model Proposed model DeepSpeech**

Preprocessor Log-mel filterbanks Wav2vec STFT

Acoustic model LAS LAS DeepSpeech

Decoder Beam search Beam search CTC decoder

Table 2.1: Representation of various baseline model structure and the proposed model with
respect to the template figure 2.1. **DeepSpeech model is a baseline model used for comparing our
results with models of different underlying structures.

In the proposed model, we replaced the preprocessor module; naive log-mel filterbanks

with a learnable feature extractor: wav2vec. We used these compact signal representations to

train the LAS acoustic model. For the decoder module, we use the beam search decoder. Every

other aspect of the model remains the same apart from the preprocessor module and the training

procedure. As the proposed model uses a learned preprocessor module, wav2vec is pretrained

on unlabeled data before training acoustic models.

Firstly, we started with ASR task on mono-lingual English audio data, where we observed

that wav2vec preprocessor improved accuracy of the model by a substantial amount (Refer

Table 4.1). After the ASR results, we implemented the same model setup for LID tasks as

well. Furthermore, we also used another baseline model DeepSpeech trained on CTC loss for

comparison of results.
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Figure 2.8: Proposed Model Architecture: The preprocessor section refers to the wav2vec
model, the LAS model represents the acoustic model structure, and a beam search algorithm
is used as decoder. The difference between the baseline model and proposed model design is
the wav2vec block.
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Chapter 3

Experimental Setup

3.1 Datasets

There are two primary tasks that we targeted upon during the course of the project. The initial

goal was focused upon the ASR task for monolingual English language, while the latter was

targeted upon multilingual speech identification task. Given the time restriction, we were able

to generate results only on the task of utterance level LID for Telugu-English dataset.

3.1.1 Automatic speech recognition

Libri speech

Libri speech dataset [22] is one of the largest speech datasets currently used as a standard dataset

in most of the speech recognition tasks. This corpus includes approximately 1,000 hours of

English speech, derived from audio books read by multiple speakers. Such datasets are useful

in designing language models in speech recognition tasks. In our experiments, we used 5 hours

of Libri speech dataset with labels for training the LAS model. While the wav2vec model is

pretrained on 960 hours of Libri speech data without any labels.

Wall street journal (WSJ) speech

WSJ dataset [23] contains English speech collected from a large variety of speakers with tran-

scribed labels. The dataset is older and smaller than the current datasets such as Libri, but some

suites of WSJ dataset are considered as standard for error rate calculations during testing. The

error metrics for our models are calculated on the ‘nov92 suite of WSJ dataset.
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3.1.2 Language identification

For wav2vec pre-training, we used a combination of two significant datasets released during

two Interspeech conference events:

1. For classifying audio into code-switched or mono-lingual at utterance level, the 2020 In-

terspeech workshop on code-switching in multi-lingual communities released a standard

train, dev split dataset for two major tasks,

(a) Language identification at the utterance level.

(b) Language identification at 200 ms Frame level.

The dataset consists of code-switched datasets on Telugu-English, Tamil-English and

Gujarati-English languages. A standard example is mentioned below:

Figure 3.1: Utterance Level Data Sample (T = Telugu, E = English, = Word separation)

Figure 3.2: 200 ms Frame Level Sample (T = Telugu, E = English, S = Silence)

2. For accelerating the research in the domain of multi-lingual speech recognition using

minimal resources, Microsoft Research released a large corpus of labeled speech data

on three languages namely Tamil, Telugu and Gujarati during the 2018 Interspeech spe-

cial session. The data is for speech recognition task and contains labels consisting of

phonemes.

As wav2vec pre-training requires large amounts of unlabelled speech data, we combined the

train speech dataset from 1 and complete train, dev, test split of 2, totalling to 289.51 hours of

speech data for multi-lingual pre-training. We believe that as multiple languages share some
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common features, multi-lingual feature representations may provide critical advantages over

the problem of training a new encoder per language.

To train and evaluate the acoustic model; we use the Telugu-English code-switched dataset

for LID task (1-a) at utterance level, which provide labels of which language the utterance

belongs. The baseline acoustic model is precisely similar in structure with our model, the only

difference being the input features are computed using 40 log-mel filterbanks with a 25 ms

sliding window. (Refer to Section 2.1.1 and 2.4)

3.2 Toolkits for building models

Nabu

Nabu is an ASR framework built on Tensorflow with existing implementations of some end-to-

end speech to text recognition models. The 4 major divisions of the framework based on the

sub-tasks it achieves are data preparation, training, testing, and decoding.

For each of the mentioned tasks, there exists a recipe that defines functions and modules

being used. For instance, data preparation recipes include the name of the data processors to call

during feature extraction. The essential elements to the Nabu framework are its user-friendly

CLI tools, adaptive data pipelines, and code modularity through ‘recipes.’ Also, Kaldi ASR

framework is compatible with Nabu, thus giving access to modules not available in Nabu.

Nabu is one of the only structured codebases with the implementation of the LAS model,

which we would be using as a baseline. For more details, refer to the framework documentation

at https://vrenkens.github.io/nabu/.

Fairseq

Fairseq [21] is a recent framework by Facebook, allowing researchers to design custom models

for sequence modeling tasks such as translation, summarization, language modeling, and other

text generation tasks. The framework is a good option for current research work in ASR as they

have shown reference implementations of over 19+ research papers, some of which are still

the state-of-the-art in some specific domains. For example, the toolkit provides their original

implementation of the wav2vec model and commands to modify the training & model structure

accordingly. For more details on the Fairseq framework, refer to the following link. https:

//github.com/pytorch/fairseq
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Espresso

Espresso [33] is an ASR toolkit based on the PyTorch and the neural machine translation toolkit

Fairseq. The fairly new toolkit, dated 15 October 2019, uses only Kaldi as its dependen-

cies, unlike other prevalent toolkits like Espnet that depend on Chainer as well. Moreover,

Espresso plans to go independent of any such dependencies. Attributing the complete modular-

ity of Espresso framework, various language models are incorporated easily in the framework.

Espresso already contains a CNN-LSTM Encoder and an LSTM Decoder with Attention. Other

advantages of Espresso includes parallelization and distributed training and decoding for quick

turnaround of experiments. We plan on adding the LAS class in the speech models class of the

Espresso in the future.

3.3 Pre-training procedure for the wav2vec model

We implemented the architecture of wav2vec proposed in [28] and described in 2.1.2 using the

setup from fairseq library [21] in Pytorch. The model is trained for 15 million update steps, and

uses Adam [15] as its optimizer. The trainer uses a cosine learning rate scheduler [17] annealed

over 15 million update steps starting with a learning rate of 10−7 and then warming up gradually

to 5 ∗ 10−3 and then decay it following a cosine curve to 10−9. The contrastive loss uses ten

distractor samples and trains on predicting the actual sample from the collection of negative

samples and correct speech sample.

We trained our multi-lingual wav2vec model on a single Nvidia GeForce 1080Ti GPU

with 6 Gb memory, requiring us to decrease the number of audio sequences per batch compared

to [28]. We used 0.5 million as the maximum number of frames per batch and 0.1 million as

the maximum frames each sample can hold in a batch. Apart from the datasets, the pre-training

procedure is the same for both ASR and LID tasks.

The work reported in [28] has shown that utilizing more speech data for training wav2vec

creates better feature representations. Given that we used a limited amount of data and no spe-

cific speech dataset for English speech as a part of LID competition rules, there is a very high

possibility of result improvements if other sources of speech dataset are taken into considera-

tion.
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3.4 Training details for acoustic models

Before training, the input data is transformed into compact representations using wav2vec for

our model. Similarly, the same is done for the baseline model using log-mel filterbanks. These

feature representations act as the input data for the training of the LAS model to perform char-

acter level prediction of which language the utterance belongs. Here, we specify the exact

parameters used for the training of acoustic models. We use the Nabu toolkit implementation

of LAS for training and evaluation of the baseline as well as our model. The listener module of

LAS consists of 2 pyramidal BLSTM layers with a non-pyramidal BLSTM layer stacked upon

the pyramidal layers, each layer having 256 nodes. We added a Gaussian input noise with a

standard deviation of 0.6 during training and a dropout rate of 0.5. The speller module con-

sists of two layer LSTM with 128 nodes each, with a dropout rate of 0.5. The trainer uses an

exponential decay learning rate scheduler with a decay constant of 0.1 and batch size of 32.

3.4.1 Automatic speech recognition model

Both our proposed LAS model & baseline LAS model are trained for 100 epochs to minimize

average cross-entropy loss on monolingual ASR task at character level. The model predicts 29-

dimensional character probabilities for each character, 26 of which represent the phonemes of

English language, and other three represent blank, silent, and ‘end of statement’< eos > labels.

However, during inference and test runs, we used a simple beam search decoder implementation

described in 2.3.1 with a beam width β = 16 and maximum character length output to be 300.

3.4.2 Language identification model

The proposed & baseline model are trained for 100 epochs to minimize average cross-entropy

loss on LID task at the utterance level. The model predicts 5-dimensional character probabilities

for each character, 2 of which represent the language to which the utterance belongs, and other

three represent blank, silent, and ‘end of statement’ < eos > labels. For example, in our

experiments with Telugu-English datasets, a typical output/label of length n may look like y =

{< sos > y1y2.. < eos >} where yi ∈ {T, E, , sil} and yn = {< eos >}. However, during

inference and test runs, we used a simple beam search decoder implementation described in

2.3.1 with a beam width β = 4 and maximum character length output to be 300.
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Chapter 4

Metrics and final results

4.1 Automatic speech recognition task

We evaluate our model with pre-trained wav2vec representations and the baseline with log-

mel filterbanks on the ASR task for Libri speech dataset. We measure the performance on the

‘nov-92’ dataset using Character error rate (CER) as the metric. The CER is defined as:

CER = (i+ s+ d)/n (4.1)

where n is the total number of characters, the minimal number of character insertions i, sub-

stitutions s and deletions d required to transform the reference text into the output. The table

below mentions the CER values by these models.

Results on

Model Name Character Error rate

Baseline model (10 epochs) 0.750

Proposed model (10 epochs) 0.752

Baseline model (100 epochs) 0.574

Proposed model (100 epochs) 0.524

Table 4.1: Results on ASR task for WSJ ‘nov-92’ English speech dataset. All models are trained
on 5 hours of Libri dataset.

The observations present an improvement in the character error rate of the LAS model

as the proposed model performed far better than the baseline model with filterbank features.

When we compared the results at 10 epochs, the baseline showed better performance than our

proposed model by a small margin. The increased size of feature vectors may be one of the pos-

sible reasons behind the lagging performance of the proposed model, thus indicating that LAS

27



models with wav2vec training may need more training epochs when it comes to more complex

tasks like LID. As mentioned earlier, the filter-bank feature vectors are 123-dimensional, while

the wav2vec features are 512-dimensional, thus increasing parameters and slowing the learning

pace for initial epochs.

4.2 Language identification task

We evaluate our model with pre-trained wav2vec representations and the baseline with log-

mel filterbanks on the LID task at utterance level, on a Telugu-English code-switched dataset.

Though our wav2vec module was trained on all 3 languages; Gujarati, Telugu and Tamil, we

were not able to perform evaluation for other languages due to time restrictions. We mea-

sure LID performance on the dev split of Telugu-English dataset using various metrics such

as character error rate, accuracy and equal error rate. We also compare our performance with

another baseline model, DeepSpeech baseline as mentioned in 2.2.2, an end-to-end multi-layer

model [1] consisting of 5 layers of LSTM, each consisting of 1024 neurons and trained using

CTC loss.

4.2.1 Various comparision metrics

The models are trained with the goal of minimizing average cross-entropy error, that in turn

helps decrease character error rate. During the evaluation, the beam search decoder outputs a

character sequence as output, which we compare to the ground truth sequence using Leven-

shtein distance, which is usually used to calculate Character error rate. The CER is defined as

mentioned in Section 4.1.

Another metric that we used for comparing models is accuracy. Accuracy is defined as

predicting whether a speech is monolingual or code-switched, aka binary classification. How-

ever, as our models are trained for optimizing CER task, we output 1 for those samples whose

output character sequence has both ‘E’ and ‘T’, while 0 for a monolingual character sequence.

We approach the sequence labels in the same way and calculate the accuracy as

accuracy =
No of correct predictions

Total number of samples
(4.2)

Similarly, equal error rate (EER) is defined as:

EER =
TFR
T

+ TFA
T

2
(4.3)
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CER Accuracy EER

DeepSpeech Baseline – 76.8% 11.6%

LAS + filterbanks Baseline 0.31 81.8% 9.1%

LAS + Wav2vec Proposed 0.46 69.2% 15.4%

Table 4.2: Results on utterance level LID classification task on Telugu-English code-switched
dataset. All acoustic models are trained for 100 epochs except the DeepSpeech baseline model,
which is trained for 40 epochs, provided by Interspeech LID competition. The numbers are
being reported on the dev set.

where TFR = Total no of false rejects, TFA = Total no of false accepts and T = Total no of

samples.

4.2.2 Training and validation graphs

Figure 4.1: Training Loss graphs which represents the average cross entropy loss of the pro-
posed model and baseline model vs update steps. Each epoch update is equal to 1045 batch
update steps. Graphs are extracted from tensorboard.
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Figure 4.2: Validation Loss graph which represents the character error rate of the proposed
model and baseline model vs update steps. Each epoch update is equal to 1045 batch update
steps. Graphs extracted from tensorboard.
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Chapter 5

Conclusion and future work

Our project exploiting a novel method of a learnable feature extractor based on unsupervised

learning, and evidently demonstrate that it outperforms naive rule-based feature extractors like

log-mel filterbanks. Initally, we thoroughly researched the field of ASR and various methods for

decoders and encoders. We further completed an intensive literature survey and incorporated

and studied various models, including both CTC losses and phoneme probabilities. As demon-

strated by the results on ASR using the LAS model stacked over the wav2vec, the accuracy and

error rates were much better than the baseline, which used a log-mel filterbank with the LAS

acoustic model.

Motivated by the achievements of wav2vec in the ASR task, we exploited the wav2vec

model for the multilingual LID tasks as well. We tested the hypothesis that various languages

share some common representations through learned features, and training the wav2vec with

multiple languages as well some code-switched data may actually improve performance. The

major hindrance we faced was the requirement of extensive compute resources and prolonged

training time of wav2vec, and so we used a smaller version of wav2vec for the LID task. The

available dataset was largely biased towards a single language, and we received merely a few

examples of other languages. We trained the wav2vec model with data much less than the

previously trained wav2vec model for the ASR task and achieved comparable results with the

baseline. Due to scarce data, the feature extractor could not learn better features. During the

wav2vec training, the loss function followed a steep and a monotonic descend, which clearly

implies that wav2vec training is not completed. If time permitted, then we could extract better

features for improved accuracy and significantly low error rates. Lastly, the wav2vec was trained

on three languages: Gujarati, Telugu, and Tamil, but was not trained on English seperately.

Whereas, the baseline was trained and tested on code-switched English and Telugu only. This

resulted in some misleading features in the wav2vec model and thus degraded the performance.
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Future Works

• If enough resources are available, wav2vec large would be trained on a much larger and

equalized dataset to achieve a significant improvement in performance.

• Moreover, the parameters of wav2vec are frozen while LAS training due to limited com-

putational resources. In the future, the wav2vec fine-tuning may give improved results.

• Further, the only module of the proposed model that is not learnable is the beam search

decoder. We would implement a differential beam search decoder for making the pro-

posed model completely end-to-end.

• Lastly, we plan to integrate the existing models in a single framework to increase the

controllability and optimization of our model. Currently, our wav2vec is built on PyTorch

in Fairseq toolkit, while the rest of the LAS model is built on Tensorflow in the Nabu

toolkit. The severe challenges posed to unify the toolkits are the different framework and

dependencies for both the models. Once united on a potential framework, Espresso or

Fairseq, these frameworks can readily support the extension for multilingual models on

our current designs.
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